Activation of TREK-1, but Not TREK-2, Channel by Mood Stabilizers

نویسندگان

  • Eun-Jin Kim
  • Dong Kun Lee
  • Seong-Geun Hong
  • Jaehee Han
  • Dawon Kang
چکیده

Earlier studies have demonstrated that the tandem pore domain weak inward rectifying K⁺ channel (TWIK)-related K⁺ (TREK)-1 channel is inhibited by antidepressants and is associated with major depression. However, little is known about the effect of mood stabilizers that are commonly used for treatment of bipolar disorder on TREK channels, members of the two-pore domain K⁺ (K2P) channel family. This study sought to investigate the effect of mood stabilizers on TREK-1 and TREK-2 channels. HEK-293A cells were transfected with human TREK-1 or TREK-2 DNA. The effect of mood stabilizers on TREK-1 and TREK-2 was studied using the patch clamp technique. Changes in TREK protein expression by mood stabilizers were studied in the HT-22 mouse hippocampal neuronal cells using western blot analysis. Lithium chloride (LiCl, 1 mM), gabapentin (100 μM), valproate (100 μM), and carbamazepine (100 μM) increased TREK-1 currents by 31 ± 14%, 25 ± 11%, 28 ± 12%, and 72 ± 12%, respectively, whereas they had no effect on TREK-2 channel activity. In addition, western blot analysis showed LiCl and carbamazepine slightly upregulated TREK-1 expression, but not TREK-2 in the HT-22 cells. These results suggest that TREK-1 could be a potential therapeutic target for treatment of bipolar disorders as well as depression, while TREK-2 is a target well suited for treatment of major depression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking.

Twik-related K+ (TREK) channels produce background currents that regulate cell excitability. In vivo, TREK-1 is involved in neuronal processes including neuroprotection against ischemia, general anesthesia, pain perception, and mood. Recently, we demonstrated that A-kinase anchoring protein AKAP150 binds to a major regulatory domain of TREK-1, promoting drastic changes in channel regulation by ...

متن کامل

Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells.

Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-...

متن کامل

Hydrogen peroxide selectively increases TREK-2 currents via myosin light chain kinases.

Two-pore domain K+ (K2P) channels play a critical role in cellular responses to various stimuli, such as stretch or changes in pH and are considered to be important in pathological responses such as apoptosis and tumorigenesis. We investigated effects of H2O2 on various K2P channels expressed in CHO cells. Application of H2O2 did not affect TASK-1, TASK-3, TRAAK currents, but specifically incre...

متن کامل

Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels.

Background potassium channels determine membrane potential and input resistance and serve as prominent effectors for modulatory regulation of cellular excitability. TREK-1 is a two-pore domain background K+ channel (KCNK2, K2P2.1) that is sensitive to a variety of physicochemical and humoral factors. In this work, we used a recombinant expression system to show that activation of G alpha(q)-cou...

متن کامل

Zinc activates TREK-2 potassium channel activity.

TWIK-related K(+) channel (TREK)-2 is thought to contribute to setting the resting membrane potential and to tuning action potential properties. In the present study, the effects of divalent metal ions (Ba(2+), Co(2+), Ni(2+), Pb(2+), and Zn(2+)) were examined on TREK-2 expressed in Xenopus oocytes using the two-electrode voltage clamping technique. Pb(2+) inhibited TREK channel activity (IC(50...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017